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The goal of this study is to characterize the potential effect of artifacts originating from physiological noise on
statistical analysis of diffusion tensor MRI (DTI) data in a population. DTI derived quantities including mean
diffusivity (Trace(D)), fractional anisotropy (FA), and principal eigenvector (ε1) are computed in the brain of
40 healthy subjects from tensors estimated using two different methods: conventional nonlinear least-
squares, and robust fitting (RESTORE). RESTORE identifies artifactual data points as outliers and excludes
them on a voxel-by-voxel basis. We found that outlier data points are localized in specific spatial clusters in
the population, indicating a consistency in brain regions affected across subjects. In brain parenchyma
RESTORE slightly reduces inter-subject variance of FA and Trace(D). The dominant effect of artifacts,
however, is bias. Voxel-wise analysis indicates that inclusion of outlier data points results in clusters of
under- and over-estimation of FA, while Trace(D) is always over-estimated. Removing outliers affects ε1
mostly in low anisotropy regions. It was found that brain regions known to be affected by cardiac pulsation –

cerebellum and genu of the corpus callosum, as well as regions not previously reported, splenium of the
corpus callosum–show significant effects in the population analysis. It is generally assumed that statistical
properties of DTI data are homogenous across the brain. This assumption does not appear to be valid based
on these results. The use of RESTORE can lead to a more accurate evaluation of a population, and help reduce
spurious findings that may occur due to artifacts in DTI data.
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Introduction

Diffusion tensor imaging (DTI) (Basser et al., 1994) is a magnetic
resonance imaging (MRI) technique that allows non–invasive
investigation of structural and architectural features of living tissues
(Pierpaoli et al., 1996). DTI is increasingly being used for clinical
investigations and, in particular, for brain studies. Diffusion tensor
derived quantities of interest generally include an index of diffusion
anisotropy (the most popular is the fractional anisotropy (FA)
(Pierpaoli and Basser, 1996)); the mean diffusivity, bDN which is
equal to 1/3 of the trace of the diffusion tensor, Trace(D); and the
orientation of highest diffusivity, which is collinear with the principal
eigenvector ε1.

There are a number of image artifacts that can corrupt diffusion
weighted images (DWIs) which in turn affects DTI derived quantities.
These include, but are not limited to, bulk subject motion, eddy
current distortions, B0 susceptibility induced EPI distortions, signal
dropouts, local mis-registration caused by pulsatile motion due to the
cardiac cycle, and system related artifacts such as spike noise and
temporal instabilities of the scanner. Correction of many of these
artifacts is possible (Skare and Andersson, 2001; Pierpaoli et al., 2003;
Rohde et al., 2004; Nunes et al., 2005; Wu et al., 2008); for example,
distortions due to bulk motion and eddy current distortions are
generally corrected in post-processing in DTI studies using image
registration strategies.

Noise in MR imaging is another complicating factor which can
affect DWIs and, consequently, tensor derived quantities. Thermal
noise in MR images can be modeled by a Gaussian distribution
(Henkelman, 1985) as long as the images have sufficient SNR (Koay
and Basser, 2006; Koay et al., 2006). The originally proposed least-
squares regression approach of tensor fitting (Basser et al., 1994)
takes into account thermal noise by including the assumed signal
variance as a weighting factor in the fitting. However, artifacts
generally cannot be modeled by a simple distribution. Traditionally,
individual images affected by severe outlier type artifacts were simply
removed manually on an image-by-image basis. A more sophisticated
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approach is to use robust tensor fitting techniques applied on a voxel-
by-voxel basis which have been proposed for mitigating the effects of
artifactual data points that manifest themselves as outlier data
(Mangin et al., 2002; Chang et al., 2005). One of these robust fitting
algorithms, called RESTORE (Chang et al., 2005), identifies outlier data
points and removes them regardless of their origin: subject (e.g.
cardiac pulsation and respiration) or scanner dependent (e.g. spike
noise). RESTORE has shown good performance in Monte Carlo
simulations (Chang et al., 2005) but few quantitative studies of in
vivo brain data exist and little is known about the regional distribution
of data points that would be identified as outliers in the human brain,
in particular, in a population of subjects.

We previously reported in a preliminary study of healthy subjects
that outliers appear clustered in certain regions of the brain with a
consistent distribution across subjects (Walker et al., 2008) and that
this will likely have an effect on the outcome of a population analysis
(Walker et al., 2009). Additionally, preliminary findings suggest that
the results of a statistical group analysis of a patient and a control
population can differ if tensor fitting is performed using RESTORE
rather than a traditional linear least-squares approach (Peterson et al.,
2008). Apart from these findings, the general question whether
outlier rejection is an important consideration when performing a
clinical population analysis using tensor-derived quantities remains
largely unanswered. Logically, one would assume that there can be
two possible effects of outliers: 1) their presence could increase the
variance of tensor derived quantities, modulating the statistical power
of measurements in a heterogeneous way across the brain, and/or
2) they could introduce a bias in the value of tensor derived quantities,
causing a systematic increase or decrease associated with artifacts. It
is not unreasonable to suspect that either or both of these effects could
affect the statistical properties of tensor-derived quantities; and there
is no guarantee that different quantities will be affected equivalently.
For example, bias or increased variability could exist for anisotropy,
while absent for Trace(D) in certain brain regions.

In this work we present an investigation into the statistical effects
of outlier data points in a population of 40 healthy human volunteers
that underwent a fairly typical DTI brain study. We perform a
qualitative assessment of the mean and standard deviation of tensor
derived quantities across the population, as well as a voxel-wise
group analysis of these quantities, and assessed differences in the
orientation of highest diffusivity in tensors estimated first with the
nonlinear least-squares (NLS) tensor fitting algorithm (referred to as
conventional tensor fitting) and secondly with the RESTORE robust
tensor fitting algorithm. Our goals are to characterize the regional
distribution of data points that are identified as artifactual (outliers)
and to investigate the potential consequences of outlier rejection on
the statistical outcome of DTI population analysis. Additionally, we
make freely available our population maps for investigators who may
be interested in assessing variability in the brain regions of interest for
their studies.

Methods

Subjects

40 healthy volunteers aged 22 to 32 years (average 26±3 years),
20 male, 20 female, right handed, self-reported as Caucasian, and
with a minimum education of a college degree were scanned on a
3.0 T GE Excite scanner using an eight channel coil (GE Medical
Systems, Milwaukee, WI). All participants were fully collected under
a Human Cortical Physiology and Stroke Neurorehabilitation Section
protocol, and provided written informed consent before taking part
in the study, which was approved by the Institutional Review Board
of the National Institute of Neurological Disorders and Stroke, NIH.
Whole brain single-shot echo-planar (EPI) DWI datasets were
acquired with the following parameters: TE/TR=76.4/18277.2 ms,
2.5×2.5 mm2 in-plane resolution, zero-filled by the scanner to
1.875×1.875 mm2, with 60 slices at 2.5 mm thickness, b-value of
1100 s/mm2 in 50 non-collinear directions, and 10 images at a b-
value of 0 s/mm2, for a total of 60 brain volumes, SENSE acceleration
(ASSET) factor=2, no cardiac gating was performed. Structural T2-
weighted (T2W) FSE images were acquired for each subject with TE/
TR=122/8333 ms, FOV=240 mm2, acquisition matrix 512×512,
1.5 mm slice thickness.

Image Processing

Preprocessing of the DWIs was performed with algorithms
included in the TORTOISE software package (www.tortoisedti.org)
(Pierpaoli et al., 2010). DWIs were first corrected for motion and eddy
current distortions according to Rohde et al. including proper re-
orientation of the b-matrix to account for the rotational component of
the subject rigid body motion (Rohde et al., 2004; Leemans and Jones,
2009). In addition, B0 susceptibility induced EPI distortions were
corrected using an image registration based approach using B-Splines
(Wu et al., 2008). All corrections were performed in the native space
of the DWI images. For consistency, all images were reoriented into a
common space defined by the mid-sagittal plane, the anterior
commissure, and the posterior commissure (Bazin et al., 2007) also
with appropriate rotations to the b-matrix.

Tensor fitting was performed twice on the corrected images; first
using conventional fitting and second using RESTORE. The RESTORE
algorithm uses iteratively reweighted least-squares fitting to identify
outlier data points on a voxel-by-voxel basis. It then removes these
outlier data points from consideration in the final tensor fitting, and
performs conventional fitting on the remaining data points. An
appropriate estimate of the “artifact free” signal standard deviation is
required for accurate results with RESTORE; otherwise the algorithm
could reject too many or too few data points. This signal standard
deviation (σ) was initially estimated from the standard deviation of
the signal measured in an ROI in the background using the classic
Henkelman formula (Henkelman, 1985). However, Henkelman's
formula does not account for the many confounding effects on
thermal noise in imaging, which includes the use of multiple coils,
parallel imaging acquisition and reconstruction (Kellman and
McVeigh, 2005), apodization strategies, padding of background
regions done by the proprietary software of the manufacturer,
image interpolations for correction of non-linearity of the gradients
(Wang et al., 2004), and subsequent image interpolations to correct
for eddy distortion, motion (Rohde et al., 2005), and B0 susceptibility
induced EPI distortion. Therefore, this approach resulted in an under-
estimation of the true signal variability in the data. This conclusion
was reinforced by the finding that the resulting reduced chi-square
values (Xv

2) (Bevington, 1969) of the non-linear tensor fitting in all
voxels in the brain parenchyma were systematically greater than 1. If
the expected signal variability is correctly estimated in artifact free
regions the resulting Xv

2 values should be close to 1 by definition
(Bevington, 1969). Assuming that less than 50% of brain voxels are
affected by outliers, we decided to extract a reasonable estimate of the
“artifact free” signal standard deviation to be used by the RESTORE
algorithm directly from the residuals of the tensor fitting. The details
of the procedure we employed are shown in Appendix A.

The RESTORE algorithm used in this work is a modified version
(Chang et al., 2009) of the previously published algorithm (Chang
et al., 2005), with an additional constraint to remove computational
instabilities. This added constraint uses the condition number (Skare
et al., 2000) to avoid too many data points from the same direction
being excluded as outliers, which can yield an ill conditioning in the
design matrix. If this situation arises RESTORE is not performed and
NLS fitting is used with all data points included.

During the tensor fitting, maps of the outlier data points are
created in order to investigate the regional distribution of outliers in
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each subject. An outlier rejection map was computed using the
following formula on a voxel-by-voxel basis:

#outliers
#degrees of freedom

× 100 ð1Þ

where the number of degrees of freedom is equal to the total number
of images minus the number of fitted parameters. For this acquisition
the number of degrees of freedom is equal to 50DWI volumes – 6fitted
parameters=44. For example, 8 corrupted data points identified by
RESTORE and eliminated from the tensor fitting will result in an
intensity value of 18 on the outlier map (8/44=18%).

Following tensor estimation, spatial normalization was performed
in order to do a voxel-wise analysis of the population. Ideally, local
inter-subject variability due to mis-registration should be eliminated
to study the effects of variability due to noise and artifacts. We used a
non-parametric, diffeomorphic deformable image registration tech-
nique implemented in DTI-TK (Zhang et al., 2007), that incrementally
estimates its displacement field using a tensor-based registration
formulation (Zhang et al., 2006). It is designed to take advantage of
similarity measures comparing tensors as a whole via explicit
optimization of tensor reorientation and includes appropriate
reorientation of the tensors following deformation (Zhang et al.,
2006). Fig. 1 shows the mean and standard deviation of FA of the
population after registration. In general, the amount of residual mis-
registration appears to be quite low in the major white matter areas,
as well as in the cerebellum. Relatively high standard deviation is still
observable at the periphery of the brain, which is to be expected
because of the anatomical variability of the folding pattern in different
individuals. The optic radiations, fornix, and anterior commissure also
show some variability, possibly due to residual mis-registration.

The fully deformable registration was applied to all of the subjects’
tensor images, and the resulting deformation field was then applied to
the outlier maps, and to the FA and Trace(D)maps from both RESTORE
and conventional fittings. An outlier rejection probability (ORP) map
Fig. 1. Mean and standard deviation of the population (N=40) for FA after diffeomorphic
improved compared to affine registration (not shown), particularly in the major white mat
regions, particularly at the top of the brain.
for the population was created by taking the mean of the 40 subjects’
registered outlier maps (Fig. 2). The average tensors were used to
calculate the difference in angle of the orientation of the principal
eigenvector (ε1) between the conventional and RESTORE data, as well
as the expected average covariance matrix of the tensor (Koay et al.,
2007) and covariance matrix of the orientation of ε1 (Koay et al.,
2008). From the covariance matrices we computed the normalized
area of the cone of uncertainty at 95% confidence for both
conventional and RESTORE fittings.

Image Analysis

Mean and standard deviation (SD) maps of FA and Trace(D) were
calculated across the population for both the RESTORE and the
conventional data. Subtraction maps (conventional minus RESTORE)
were calculated to qualitatively evaluate the differences in variance
and in mean between the two fitting algorithms. To further test the
difference in mean between the two groups, voxel-wise analysis was
performed using Randomise version 2.5 (Nichols and Holmes, 2002)
from the FSL software package version 4.1.4 (Smith et al., 2004). For
this analysis, we performed a paired t-test type statistical analysis
with the conventional data and the RESTORE data as the two groups,
using the threshold-free cluster enhancement (TFCE) (Smith and
Nichols, 2009) function of Randomise, with 5000 permutations.
Cluster maps presented here use family-wise error (FWE) corrected
statistics for appropriate correction for multiple comparisons. Finally,
we investigated the effect of outlier data points on the orientation of
highest diffusivity by calculating the angular difference between the
average principal eigenvector of the population of the conventional
and the RESTORE data, as well as calculating the difference in area of
the cone of uncertainty of ε1 (Koay et al., 2008) between the two
fitting algorithms.

Mean and SD of FA, the ORP, the FSL cluster maps, and the mean
tensor image created by DTI-TK are freely available for download
at: http://science.nichd.nih.gov/confluence/display/nihpd/Data+
tensor registration. The contribution of mis-registration to the voxelwise variability is
ter tracts and the cerebellum. Higher levels of variability can be observed in peripheral
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Fig. 2. a) mean FAmap with ORP overlayed in pink (ORPN2%); b) outlier rejection probability (ORP) map is the mean outlier map of the 40 subjects. Note the well defined clusters of
outlier data points within the brain; c) standard deviation of the 40 subjects’ outlier maps. Areas of high probability outlier rejection also have a higher standard deviation within the
population than areas not affected by outliers.
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Downloads. Investigators are invited to use these maps to identify
whether their clinical findings lie within parenchyma regions of high
or low probability outlier rejection, which can indicate whether it may
be prudent to apply robust tensor fitting to their data.

Results

The mean FA map, computed from the spatially normalized FA
maps of the conventional data, the corresponding ORP map, and the
standard deviation of the outlier maps are shown in Fig. 2. Voxels with
ORP values greater than 2% are overlaid in pink on the mean FA map
(Fig. 2a), showing the anatomical location of the regions likely to be
affected by outlier data points. In the ORP map (Fig. 2b) the brightest
value (white) corresponds to a 10% rejection of data points as outliers.
The ORP map shows a distinct regional distribution of outliers in the
population, with a very low probability of outliers occurring in the
superior parts of the brain, and a higher percentage of outliers in the
medial portions of the cerebellum, middle cerebellar peduncles,
discrete regions in the temporal lobes including the ventral medial
portion of the temporal lobes whichmay encompass the fimbria of the
hippocampus, the hippocampus and the amygdala, peri-ventricular
regions, the midline portion of the genu and splenium of the corpus
callosum, insular regions, ventral frontal areas, as well as at air-tissue
interfaces and cerebrospinal fluid (CSF)-tissue interfaces. In regions of
high ORP there is a correspondingly high standard deviation, while
areas with near zero ORP have a correspondingly low standard
deviation (Fig. 2c). These findings indicate that areas not affected by
outliers are consistentwithin the population,while regions that have a
higher probability of outlier rejection are more variable within the
population.

Figs. 3a and b show the subtraction of SDmaps for FA and Trace(D)
respectively (conventional minus RESTORE). Bright areas indicate
that processing with RESTORE reduces the variance, while dark areas
indicate that processing with RESTORE increases the variance. If using
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Fig. 3. Subtraction maps of a) FA and b) Trace(D) standard deviation across 40 subjects. Bright areas indicate that processing with RESTORE reduces the variance, while dark areas
indicate that processing with RESTORE increases the variance. Largest decreases in variance are seen in the cerebellum (thick white arrows) and insular regions (thin white arrows),
largest increase in variance in CSF regions (black arrows).
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RESTORE fitting is an improvement over conventional fitting, then we
would expect a reduction in variance, andmore bright areas than dark
areas on the subtraction map. There are only small differences in the
superior parts of the brain, mainly in the air-tissue interfaces, which
do not show a systematic trend. In cerebellar regions (thick white
arrows) there is a reduction of variance using the RESTORE fitting for
both Trace(D) and FA. There is an increase in Trace(D) variance using
RESTORE in the ventricular regions (black arrows). There appears to
be a reduction in variance of Trace(D) in the insular region, which
transitions to an increase in variance at the periphery of the insula
where there is partial volumingwith CSF (thin white arrows). There is
also a small decrease in variance in the genu of the corpus callosum.
Overall, the magnitude of the changes in variance is small, but
regionally varying.

Figs. 4a and b show the subtraction of the mean values of FA and
Trace(D) respectively (conventional minus RESTORE). Bright areas
indicate that processing with RESTORE reduces the mean value, while
dark areas indicate that processing with RESTORE increases the mean
value. In the more superior parts of the brain, similar to the
subtraction of SD, there is very little difference between the two
fitting algorithms with the exception of the very peripheral regions at
the tissue-air interfaces. In cerebellar regions, higher values of FA and
Trace(D) in the population are found using conventional fitting (white
arrows), which agrees with our previous findings in a different
population (Walker et al., 2009). FA and Trace(D) values are slightly
higher in the population in the ventricular regions using the RESTORE
method. Additionally of note is a dark area on the midline of the genu
(black arrows) and splenium (not pictured) of the corpus callosum in
FA and the opposite on Trace(D), and bright areas in the insular
regions for both FA and Trace(D) (thin white arrows). Overall, the
presence of bias in FA and Trace(D) is more clearly demarcated than
the effect on the variance and it is also regionally varying.

Cluster maps in the brain parenchyma from the Randomise TFCE
analysis for differences in themean are presented in Fig. 5. Voxelswith
high CSF contamination are not included in the analysis. These voxels
were masked out by excluding voxels with mean Trace(D) value
higher than 3000 μm2/s. Fig. 5a shows the significant clusters of FA
overlaid on themean FAmap. Blue clusters represent areas of lower FA
with conventional fitting; red clusters represent areas of higher FA
with conventional fitting (p≤0.05). Red clusters are found only in the
cerebellum. Blue clusters are more widespread, including clusters in
the anterior portion of the pons, cerebellar peduncles, thalamic
regions, corpus callosum, right anterior limb of the internal capsule,
and the ventral medial portion of the temporal lobes, which may
encompass the fimbria of the hippocampus, the hippocampus, and the
amygdala. Fig. 5b shows the significant clusters of Trace(D) overlaid on
themeanTrace(D)map. There are no statistically significant clusters of
lower Trace(D) with conventional fitting. Red clusters represent areas
of higher Trace(D) with conventional fitting (p≤0.05). These clusters
are present throughout the parenchyma, and include the cerebellum,
brainstem, thalamic regions, cingulum, corpus callosum, insular areas,
the ventral medial portion of the temporal lobes, which may
encompass the fimbria of the hippocampus, the hippocampus and
the amygdala, and along the interhemispheric midline.

Fig. 6 (top row) shows the angular difference between conven-
tional and RESTORE data for the average principal eigenvector
overlaid on the average FA map of the population. This angle reflects
the orientational bias in ε1 introduced by outliers. The affected areas
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Fig. 4. Subtraction maps of a) FA and b) Trace(D) mean value across 40 subjects. Bright areas indicate that processing with RESTORE reduces the mean value, while dark areas
indicate that processing with RESTORE increases the mean value.
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are consistent with areas highlighted by the ORPmap, however, larger
angular differences are found in low anisotropy regions; grey matter
and CSF, and smaller differences in white matter. Most of the major
white matter tracts have negligible angular differences except for the
midline of the genu of the corpus callosum, the splenium of the corpus
callosum and the transverse pontine fibers (arrows). In addition, there
are large differences in the cerebellum, insula, and ventral frontal
areas. Fig. 6 (bottom row) shows the differencemap of the normalized
area of the cone of uncertainty of the average tensors (conventional
minus RESTORE). In this map, dark voxels are where the area of the
cone of uncertainty is larger when using RESTORE, while bright voxels
are where the area of the cone is smaller when using RESTORE. There
are dark voxels in the cerebellum and in the CSF spaces lateral to the
insula, and bright areas in the pons, and in ventral frontal areas. While
not clearly seen in the figure due to the small magnitude of the effect,
there are slight positive values in the genu and splenium of the corpus
callosum.

Discussion

The first goal of our study was to characterize the regional
distribution of artifactual DWI data points in the brain of a population
of healthy subjects in a typical DTI study. We found that regions of
high percentage of artifactual data points form very well defined
clusters on the outlier rejection probability map (ORP) of the
population (Fig. 2). The anatomical location of the clusters in this
study is consistent with findings of our previous preliminary study in
a different group of subjects (Walker et al., 2008). Areas of the brain
with low probability of outliers are extremely consistent within the
population, indicating that areas that are not affected by artifacts in an
individual are consistently not affected within the population. Areas
with a higher percentage of outlier rejection show also higher
variance of outlier rejection, indicating that areas affected by artifacts
are spatially consistent, but the magnitude of the effect might vary
across individuals.

The second goal of our study was to investigate the effect of
artifactual data points on the statistical properties of tensor derived
quantities in a population. The presence of artifacts in the DWIs per se
does not necessarily imply measurable consequences in a population
analysis of tensor derived quantities. Moreover, the effect could be in
either or both the mean value of the metrics, increasing the risk of
false positive findings, and/or their variance, thereby reducing the
statistical power of DTI analysis in certain brain regions.

Subtraction of the mean and SD of FA and Trace(D) of the
population processed with both RESTORE and conventional fitting
shows differences in areas which are regionally consistent with the
ORP map. These findings are also confirmed by voxel-by-voxel pair-
wise statistical analysis, in which the clusters of highest significance
are in brain regions that are generally consistent with the subtraction
maps. Voxel-wise analysis also shows that effects on the mean of FA
and Trace(D) are that outlier rejection using RESTORE nearly always
results in an increased value of FAwith the exceptionof the cerebellum
and always results in a decreased value of Trace(D) in affected
parenchyma (Fig. 5).

If we assume that RESTORE identifies and rejects artifactual data
points correctly, one can interpret a higher FA or Trace(D) value with
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Fig. 5. Cluster maps from the Randomise TFCE analysis overlaid on a) mean FA and b) mean Trace(D) images. All clusters shown are pb0.05. Blue clusters indicate areas of
significantly lower mean value with conventional fitting. Red clusters indicate areas of significantly higher mean value with conventional fitting.

Fig. 6. Top Row; Angular difference between NLS and RESTORE fitting of the average principal eigenvector (ε1) for the population, overlaid on the mean FA map of the population.
This reflects the orientational bias in ε1 introduced by outliers. Bottom Row; Subtraction of the normalized area of the cone of uncertainty of the average ε1 for the population. Bright
regions indicate lower dispersion of the individual principal eigenvectors about the mean when outliers are removed by RESTORE and vice-versa for dark regions.
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conventional fitting as an over-estimation of the metric. This effect
was observed in the cerebellum (thick white arrows on Figs. 3 and 4),
and is consistent with previous findings of artifacts associated with
cardiac pulsation (Pierpaoli et al., 2003). Signal drops due to cardiac
pulsation are likely to occur in particular directions of diffusion
sensitization. In the cerebellum, for instance, the signal drop is more
pronounced when the diffusion sensitizing gradient is applied with
superior-inferior orientation. In relatively isotropic regions, signal
drops will result in apparently increased anisotropy. In the cerebel-
lum, cardiac pulsation artifacts, in fact, result in the spurious
appearance of anisotropic tissue with superior-inferior apparent
fiber orientations. In regions where anisotropy is already present,
artifactual signal drops may cause a reduction in anisotropy. For
example, cardiac pulsation is known to create a drop-out effect in the
genu of the corpus callosum at the interhemispheric midline
(Pierpaoli et al., 2003), resulting in reduced anisotropy in that area
and a spurious “disconnection” of interhemispheric connectivity at
each systole (Jones and Pierpaoli, 2005). Our results are consistent
with these previous findings (Fig. 4 black arrows). Moreover, we
identify an additional area of instability that has not been previously
reported in a region encompassing the splenium of the corpus
callosum. The effect on anisotropy in this area is the same as that
which is observed in the genu, i.e. anisotropy is decreased by the
presence of outliers. We hypothesize that vascular effects in the
adjacent choroid plexi may contribute to the large presence of outliers
in this region.

In addition to scalar tensor derived quantities, such as Trace(D)
and FA, that are typically examined in population analysis of DTI data,
we investigated the effects of outliers on the orientation of the
principal eigenvector ε1, which is collinear with the orientation of
highest diffusivity in each voxel. This directional information is used
by diffusion based tractography algorithms. Not surprisingly, outliers
induce ε1 perturbations that are larger in low anisotropy regions such
as grey matter and CSF due to the fact that for more isotropic tensors
the fiber orientation is poorly defined. This means that small
perturbations may result in large apparent angular differences.
Angular differences were found to be smaller in magnitude in areas
of higher anisotropy. While the average orientation of ε1 in the
population in the major white matter tracts is largely unaffected by
outliers, there are a few exceptions, mainly the genu and splenium of
the corpus callosum and the transverse pontine fibers. The magnitude
of the angular difference is small in all major white matter tracts
where anisotropy is high (maximum 1 to 2 degrees); however, these
small errors may still have a significant impact on the results of both
streamline and probabilistic tractography due to propagation of error
effects (Lazar and Alexander, 2003).

Differences in the angle and cone of uncertainty are apparent in
the ventral frontal area, which has been previously identified as being
affected by respiratory artifacts in EPI imaging bymodulating the level
of ghosting and distortion (Van de Moortele et al., 2002; Barry and
Menon, 2005; van Gelderen et al., 2007). Differences in orientation of
highest diffusivity are also evident throughout the cerebellum, which
is consistent with the aforementioned spurious appearance of
anisotropic tissue with superior-inferior apparent fiber orientations.
This is complemented by an increase in the dispersion of the
individual eigenvectors around the mean (the normalized area of
the cone of uncertainty is increased) when using RESTORE. Taken at
face value this is a puzzling result. Why would RESTORE result in an
increased directional variability in the population by removing
artifactual data points? Remember that artifacts can manifest
themselves by producing a bias more than increasing variability. In
the low anisotropy regions of the cerebellum, artifacual data points
create the presence of spurious anisotropy with consistent superior-
inferior orientation. It has been shown that angular dispersion is
higher in areas of low anisotropy (Jones, 2003). Thus, when the
spurious superior-inferior apparent fiber direction is removed by
RESTORE, the resulting orientation of ε1 is intrinsically more variable
because the tissue is more isotropic.

Similarly, we surprisingly found an increased variability of both FA
and Trace(D)with RESTORE fitting in the population in areas occupied
by CSF. Potential instabilities with RESTORE have been reported,
mainly that this algorithm removes outlier data points from
consideration in tensor fitting, but, if too many points are identified
as outliers, then removing those points from the fitting will reduce the
accuracy of the results (Chang et al., 2009). Moreover, the perfor-
mance of RESTORE is expected to vary depending on the underlying
noise and artifact distribution in the data. In general, removal of
artifacts by outlier rejection is ideally suited for a situation in which a
relatively small number of severely artifactual data points corrupt an
otherwise relatively good set of data, creating a well identifiable
bimodal distribution. On the contrary, when the number of artifactual
data points is large and the effect of the artifacts is a broadening of the
distribution, RESTORE type methods will be progressively less
effective in correcting the data. It is easy to see that in the extreme
case in which the effect of the artifacts is so random to result in a
perfectly Gaussian but broader distribution of errors, RESTORE will
reject points in a random fashion, de facto rejecting good and bad data
points with equal probability. We believe that differences in the
distribution of errors between brain parenchyma and CSF spaces
could be a contributing factor in the different performance of
RESTORE in these regions. For example, in the brain tissue cardiac
related artifacts are large for a limited period of about 200 ms in the
systolic phase of the cardiac cycle (Pierpaoli et al., 2003). Essentially,
cardiac pulsation artifacts, and similarly respiratory artifacts, occur
only occasionally creating the basis for a bimodal distribution of errors
for which RESTORE excels, allowing us to capture these outliers very
well in the ORP. In CSF areas, velocity gradients of flowing CSF spins
are temporally more dispersed throughout the entire cardiac cycle
resulting in an expanded temporal window in which artifactual data
can be collected. Moreover, signal attenuation due to CSF flow can be
compounded with other signal instabilities caused by blood flow in
the vessels and choroid plexi.

Regardless of the explanation, an important practical take home
message of our study is that RESTORE improves the quality of the DTI
results in the population only in the brain parenchyma not in the
ventricular areas. Estimating diffusion parameters in the ventricles is
usually not of interest; however, we recommend not using RESTORE if
the ventricles are of interest. One other cautionary note is that
RESTORE needs adequate data redundancy to work properly, i.e. a
sufficiently large number of diffusion encoding directions, or
independent replicates of DWIs. We believe that the results of our
study are representative of what should be expected with a
reasonably redundant dataset, but different results would be found
if the number of gradient directions and/or independent replicates of
DWIs are insufficient for RESTORE to work properly.

In brain parenchyma, RESTORE robust tensor fitting generally
reduces variance and normalizes the mean value of metrics which
would otherwise be under- or over-estimated by the presence of
outlier data points in a population. The magnitude of reduction in
variance is small, but is heterogeneous across the brain, which has
implications for the statistical analysis of DTI data. In general the
variance of the measurement directly affects the statistical power of
the experiment. The statistical power of the experiment is rarely
considered in DTI studies, in part due to the difficulty of characterizing
the expected variance in the population. Our results indicate that
variance in the population is heterogeneous throughout the brain,
which implies that the statistical power is also regionally varying in
the brain. Moreover, the variance modulation when RESTORE is used
also has a specific regional distribution, which implies that using
RESTOREwill affect the statistical power in some brain regions but not
in others. Using the standard equation for statistical power, and the
assumption that the diffusion quantity of interest is normally
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distributed across the population, it is found that the population size is
proportional to the variance of the population over the square of the
effect size. It is therefore possible to estimate the population size
increase required if one chooses to use conventional fitting in place of
using the RESTORE method while maintaining the same level of
statistical power as with the RESTORE algorithm.We investigated this
in 4 regions; the cerebellum and genu of the corpus callosum where
there are a large number of outliers on the ORP map, and in the
cingulum, and the posterior limb of the internal capsule where there
are few outliers on the ORP. As expected, the difference in population
size requirements is regionally varying in the brain, and also differs for
FA and Trace(D). The cerebellum requires a population size increase of
approximately 11% for FA and 4% for Trace(D), the genu of the corpus
callosum requires an increase of approximately 4% for FA and 2% for
Trace(D), while the regions with few outliers require no population
size increase in order tomaintain the same statistical power due to the
differences of variance between conventional and RESTORE fitting.
While the magnitude of the difference in variance is small between
the two fitting algorithms, there is a regionally varying effect on the
statistical power in the brain.

We found however that the strongest statistical effect of artifacts is
to produce a bias in the values of tensor derived quantities rather than
increasing their variance in the population. Voxel-wise analysis
confirms this, with the result that inclusion of outlier data points
will generally under-estimate FA and over-estimate Trace(D).
Therefore, when considering a statistical analysis of a population,
one needs to consider that the effect of outliers may not be the same
for both patient and control populations. If one population contains
more physiological noise than the other, one could find statistically
significant results that are attributable to the presence of outlier data
points as opposed to the presence of a disease or pathology. We
recommend that investigators use the ORP, which can be downloaded
from http://science.nichd.nih.gov/confluence/display/nihpd/Data+
Downloads, to determine whether their statistically significant results
are in regions which are affected by outlier data points. This can be
done by using the provided mean FA image for registering their data
into the space of the ORP and overlaying their results with the ORP. If
the areas of interest coincide with regions highlighted by the ORP, it is
recommended to investigate the source of the difference between the
populations, and/or to use RESTORE to re-evaluate the data to be
confident that the significant results are due to disease, and not due to
the presence of artifacts.
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Appendix A

In this appendix, we will describe the procedure of our noise
estimation derived from a collection of the fitted sum of squares of the
ordinary nonlinear least squares estimation of the diffusion tensor on
a volumetric data. First, we shall denote Sijk

2 the ratio of the residual
sum of squares of the fit to the degrees of freedom v=n−p, at voxel
location (i,j,k). Note that n is the number of data points and p is 7 for
the number of unknown parameters in the diffusion tensor estima-
tion. It is known that vSijk2 /σ2 follows the Chi-square distribution and
Sijk
2 /σ2 follows the reduced Chi-square distribution (Bevington, 1969)
when the DW signals are of sufficiently high SNR and the data fit the
model well (Koay and Basser, 2006; Koay et al., 2006). In absence of
artifactual data points, the sample mean of Sijk2 /σ2 for all (i,j,k) from
the region of interest should be close to 1. Therefore, one could
estimate the noise level σ2, by imposing mean(Sijk2 )/σ2=1 and get
σ2=mean(Sijk2 ). However, the sample mean is not a robust measure
and its value is biased by artifactual points, so we need to use a more
robustmetric such as the samplemedian. To use the samplemedian in
place of the mean in theory a scaling factor α(ν) is needed (see

Appendix B for the derivation) so that σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α vð Þ × median S2ijk

� �r
.

In our case the scaling factor was negligibly different from 1 so we
did not apply it. Therefore, our procedure of noise estimation is as
follows:

Step 1 Compute Sijk2 from the voxel locations (i,j,k) that are associated
with a specific region of interest. In our case, the region of
interest included the whole brain, masked to remove skull and
background voxel values.

Step 2 Find the sample median of this collection of Sijk2 .
Step 3 Compute the estimated noise level as given by

σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
median S2ijk

� �r
;

Appendix B

In this appendix, wewill outline the derivation of the scaling factor
mentioned in Appendix A. Given that Sijk2 /σ2 follows the reduced Chi-
square distribution, wewould like to compute themedian of Sijk2 /σ2 of
the reduced Chi-square distribution so as to be able to use the sample
median of Sijk2 more accurately.

For completeness, we give definitions of the probability densities
needed in this work. The Chi-square probability density, gX2, is given
by

gX2 xð Þ = 1
2v =2Γ v = 2ð Þ x

v=2ð Þ−1e−x =2
; 0 b x b∞;

and the reduced Chi-square probability density, gXv
2, can be expressed

as:

gX2
v
xð Þ = vgX2 vxð Þ:

To compute the median, μv, of the reduced Chi-square distribution,
we use the following equation,

∫μv
0 gX2

v
xð Þdx = 1= 2:

After some manipulations, it can be shown that (Koay et al., 2009)

μv =
2
v
Q−1 v

2
;
1
2

� �
;

where Q−1 is the inverse cumulative distribution function (CDF) of
the gamma distribution. Specifically, the notation of Q−1 is exactly
equivalent to the Mathematica function called InverseGammaRegu-
larized. Listed here are some numerical values of μv from v=10 to
v=100 at a step of 10, {0.934, 0.966, 0.977, 0.983, 0.986, 0.988, 0.99,
0.991, 0.992, 0.993}. It is clear from these numerical values that the
median is lower in value than themean, which is equal to 1. Therefore,
median(Sijk2 /σ2)=μv, and σ2=median(Sijk2 )/μv=α(v)×median(Sijk2 ),
or

σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
median S2ijk

� �
= μv

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α vð Þ × median S2ijk

� �r
;

http://science.nichd.nih.gov/confluence/display/nihpd/Data+Downloads
http://science.nichd.nih.gov/confluence/display/nihpd/Data+Downloads
http://www.nitrc.org/projects/dtitk
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where the scaling factor, α(v), is related to μv, by α(v)=1/μv. Finally,
we note that the scaling factor used in this study is α(53)=1.012
because μ53 is 0.987.
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